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Abstract. A company operating in a commercial maritime port often
experiences clients filing insurance claims on damaged shipping contain-
ers. In this work, multiple classifiers have been trained on synthesized
data, to predict such insurance claims. The results show that Random
Forests outperform other classifiers on typical machine learning metrics.
Further, insights into the importance of various features in this prediction
are discussed, and their deviation from expert opinions. This informa-
tion facilitates selective information collation to predict container claims,
and to rank data sources by relevance. To our knowledge, this is the first
publication to investigate the factors associated with container damage
and claims, as opposed to ship damage or other related problems.

1 Introduction

Commercial maritime ports require high operational throughput, highlighting
the importance of optimizing intensive workflows such as those induced by filing
a claim on a damaged shipping container. To handle such a claim, port officials
collate and analyze multimodal data including visual inspection logs cargo man-
ifests environmental data, which is a time-consuming process [1,2]. Operational
time aside, human predictive accuracy reduces with human cognitive biases [3],
data volume and complexity, and prediction specificity [4] and volume [5].

Fast and accurate automated data processing is computationally expensive,
due to noisy and incomplete data. Predicting container claims affords restricting
data collation to smaller subsets, reducing computational requirements.

To our knowledge, this is the first publication to investigate container damage
causes using Machine Learning (ML) techniques, which constrains the scope of
the current knowledge against which to compare the presented methodologies.
Accurate container damage predictions enable discussing the dynamic selection
between data sources and algorithms used to process the data therefrom. This
may be used in a decision support system integrated into a terminal OS to realize
container damage causes and alleviate data collation and analysis bottlenecks.
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The remainder of the paper is structured as follows: Sec. 2 reports a survey
of related work, while our methodologies are outlined in Sec. 3, the results of
which are presented and discussed in Sec. 4. Finally, Sec. 5 concludes this work
with some directions in which it can be expanded.

2 Related Work

Related publications incorporating ML solutions and features involving ports,
ships, personnel, weather, and geography are used to guide this study.

Surveys of Taiwanese domain experts [6] reveal a taxonomy of risks posed
to refrigerated containers in their port-to-port travel, while Canadian experts
(discussed in Sec. 3) maintain that quay crane operator errors are most rel-
evant human error sources. A study of the determining factors of consignors’
port choice shows positive correlation with port proximity due to decreased en
route damage probability [7]. Operational conditions such as weather and human
factors are the primary travel risk factors [8,9]. Further, terminal-side accident
reports are confidential, hence unavailable. Yet, probability distributions model-
ing operational capabilities of personnel and equipment were used in this study.

A case study of a Seattle-bound ship [10] discusses mathematical constructs
used in simulation software [11]|, whose features guide this work. Yet, no ML
methodologies were used to compute feature importance. Ship characteristics
extracted from a source like [12] may be correlated with maritime accidents using
an ML approach. [13]. Mined features and probability densities of environmental
have been used in a custom discrete event simulator, to determine oil tanker
loading times and port storage capacity [14]. Few publications use ML techniques
to discover the causes of shipping container damage. One study compared the
efficacy of decision trees in predicting the total loss and damage to a ship [15],
supporting the use of a binary classification tree.

3 Methodology

3.1 Data

To predict container damage, container voyage data is required. A trained pre-
diction model may be applied to real-world scenarios in order to learn which
data sources and feature/information extraction techniques are best suited for
a given scenario. As robust, accurate algorithms typically require more com-
putational power, it is favorable to use them only when absolutely necessary.
Determining which data sources to use at a given time, and when to switch
between algorithms is out of the scope of this paper and left as future work.
The synthesis of the container damage prediction data set (of 1.6M records) is
discussed in this section. Each attribute in this data set was captured in a survey
completed by industry experts in Canada.? The survey results revealed how

? The survey (named Bottlenecks in Port Operations) was distributed by a Google
Forms link in July 2017, after receiving the necessary approval from the Research
Ethics Board of the University of Ottawa



strongly each attribute and correlated with container damage claims. Attribute
values were accordingly weighted on a (0, 3] scale to capture their correlation
with container damage. The value of each attribute was modeled to contribute
some amount of damage to be sustained by the container, which increased the
probability of it being claimed. The generation of attribute values and their
contributed damage to the container are discussed below.

Data Synthesis Each shipping container was assigned to one of 46 known
tracks in Jan. - Mar. 2014 and Douglas Sea Scale (DSS) [16] measures were
computed from environmental data [17]. The average damage contribution of sea
state (modeled as the modified sigmoid function (2(1 + €7~?99))~1) weighted
at 1 is the damage sustained by the container.

The containers were probabilistically assigned to shipping lines (SLs) and
trucking companies using roulette wheel selection [18], weighted by annual cargo
throughput [19,20]. The error probability per shipping line (L) was computed
based on fleet size (F'S(L)), annual throughput (7(L)) and market share (M S(L)),
weighted at 3, as described by Eq (1), capturing the notion that shipping lines
with higher F'S, T', and M S are less likely to cause shipping container damage.

0 o(L)>3C | C=maz({c(L)|L € SLs})
P(Error|L) =4 0.5 (L) <iC , e(L)=03xFS(L)+0.35x T(L)
Bxell)=1 - otherwise +0.35 x MS(L)

(1)

Finally, the container’s recipient correlates positively with damage claims,
which were modeled as having a claim probability and a claim amount, respec-
tively distributed in 2([0,0.5]) and U([0, 108]), weighted at 1. The remaining
features (cargo value, fragility, sensitivity, mass distribution, packing and load-

ing seasons, etc) and their correlated error probabilities are listed in Table 1.
Table 1. Container Features and Error Probabilities

l Feature Name ‘Feature Weight‘ Feature Distribution ‘ Error Probability
N 0 v < V/3
_ 10° 2 _ 10 _ B
Cargo Value (v) N(w=19 2 =10 P(Error|v) = {0.5 v > V/3
W ;
3 1.5 X v 0.5 otherwise
Cargo Sensitivity (s) u{0,1}) P(Error|s) = 0.5 X s
Weight Balance (d) U(0,20.4) P(Error|d) = 0.5 x 5l
Quay Crane Operator(g) U(0,0.1) P(Error|g) = g1t
. s fall, i
Packing/Toading Season(s) 1 U({fall, winter, spring, summer}) P(Error|s) = {08 ¢ € {fall, spring}
0 otherwise
Time in Storage Yard(t) U(0, 364) P(Error|t) = gg’gﬁt
Cargo Fragility (f) u{0,1}) P(Error|f) = 0.01 x f
0.01 55 With probability 0.2 2
Container Weight (w) w= {27520 0<<p.4 With probability 0.2 P(Brror|w) =2 x ({45 — 0.25)
110 with probability 0.6

Classifiers were trained on this 15-dimensional data describing the above
features, to learn which features accurately predict container claims. This allows
for the proactive gathering and collation of the terminal-side data, to present to
port officials upon the incidence of a claim (as mentioned in Sec. 1).



3.2 Experimental Setup

Table 1 lists the CI methods used from [21], along with their 95% Confidence
Intervals performance metrics. These were trained by 10x10 fold cross validation,
with training data drawn from the synthesized 1.6M records. This was then run
30 times, accounting for 100 data points per run, shown in Figure 1.

Accuracy

AdaBoost (Decision Trees) 0.65
‘AdaBoost (Naive Bayes) 0.49
Decision Tree (InfoGain) 0.66

0.0 0.2 0.4 0.6 0.8
Perfomance Measure

Recall

AdaBoost (Decision Trees) 0.7
AdaBoost (Naive Bayes) 0.5
Decision Tree (InfoGain)  0.68

Decision Tree 0.65 Decision Tree 0.7
Naive Bayes 0.54 Naive Bayes 0.7
SVM 0.51 SVM 0.49

60-Random Forest (Info Gain) 0.95 60-Random Forest (Info Gain) 0.92
65-Random Forest 0.73 65-Random Forest 0.65

2-NN 0.54 2-NN 0.34

Bagging (Decision Trees) 0.71 Bagging (Decision Trees) 0.7

Bagging (Naive Bayes) 0.54 Bagging (Naive Bayes) 0.7

0.0 0.2 0.4 0.6 0.8
Perfomance Measure

Fig. 1. Performance Metrics of Various Classifiers

4 Results and Discussion

Human reviewers remain the post-data-collation bottleneck. Since investigations
are triggered by incoming claims, false negatives are less favorable. It is there-
fore important to compare the accuracy of classifiers that have equivalent AUC
(shown in Fig 1). The superior performance of Random Forests (significantly bet-
ter than random chance) suggests that other such nonlinear and ensemble meth-
ods may be applicable. Analysis of trained decision trees and Random Forests
reveals relative feature importances (see Fig. 2), showing that the amount of time
a container spends in the storage yard is the most revealing feature in predicting
container damage claims. While a container’s cargo value was expected to be an
important feature, the quay crane operator, shipping line, and time spent in the
storage yard yield the highest container claims predictability, counter to expert
opinion.?

Analyzing the most important features shows that cargo value, hazardous-
ness, longevity, sensitivity, mass distribution, storage time, and exposure to
rough seas correlate strongly positively with filed claims, while calm sea states
have strong negative correlation. Container packing and loading seasons cor-
relate weakly with container claims with 25% support and 13% confidence in
the relevant association rules. Logistics companies are also weak features (18%
support, 11% confidence).

Cargo Fragility is found to very weakly correlate with container damage
claims (Pearson R coefficient of 3.7 x 10~% and 50% support, 50% confidence for
relevant association rules), again counter to expert opinion. This could be due
to proper container packing compensates for cargo fragility, while quay crane
operator error dominates in human error (with 8% support and 4% confidence).

* The survey results showed that cargo value, hazardous and/or sensitive cargo were
the most important, attributes in predicting insurance claims



DSS=9 (0.001)
HazMat (0.005)
DSS=8 (0.007)
SensitiveCargo (0.008)
PerishableCargo (0.008)
Fragile (0.01)
DSS=2 (0.013)
DSS=7 (0.014)
DSS=6 (0.016)
DSS=3(0.017)
DSS=4 (0.018)
DSS=5 (0.018)
PackingSeason (0.02)
LoadingSeason (0.022)
CargoWeight (0.023)
DSS=1 (0.031)

Features

TruckingCompany (0.067)
WeightBalancing (0.068)
CargoValue (0.069)
Customer (0.079)
QuayCraneOperator (0.081)
ShippingLine (0.173)
YardTime (0.231)

T

0.00 0.05 0.10 0.15 0.20
Feature Importance

Fig. 2. Relative Feature Importances

As expected, rough sea conditions correlate with more insurance claims. Ad-
ditionally, the amount of time a container spends in the storage yard positively
correlates with container damage claims, counter to the survey results. This
may be due to increased in-yard storage density decreasing the performance of
container moving equipment [2].

5 Conclusions and Future Work

Future directions of this study include identifying and fusing alternative data
sources (e.g., sources of weather, commercial cargo values, etc), enabling per-
tinence based data source ranking, to dynamically switch between them. This
would save computational costs without compromising prediction accuracy.
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